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Abstract Since Adrian Brown and Victor Henri’s work, the simplest enzyme kinet-
ics model, which contains only three rate constants k1, k2 and k−1 in 1902, has been
thoroughly explored in many directions. By using the Michaelis–Menten equation,
KM and k2 can be measured quickly. All the three rate constants can be derived by
temperature jump method or transient state kinetics, but both methods need more com-
plicated techniques and equipments. In our previous paper (Li et al. in J Math Chem
46:290–301, 2009), we gave a method to measure all the rate constants which does not
require any additional equipment other than those needed for measuring KM and k2.
Here, we propose a new one which needs no additional equipment either. This method
is based on a study of inflection points of integral curves. Numerical results show that
the new one is much better than the previous one in two aspects: near the end of the
reaction, the new one gives more accurate estimation; during the quasi-steady state
of the reaction, it also gives good estimations while the previous one can not. Hence,
this method not only advances the estimation accuracy, but also has more choices for
measuring.
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1 Introduction

Enzymes are biochemical catalysts [1]. Almost all chemical reactions in life pro-
cesses are mediated by enzymes. So studying enzymes can help people understand
life processes well [2]. Enzyme kinetics is the discipline that studies the velocity of
chemical reactions catalyzed by enzymes, which plays a vital role in the study of
enzymes. Since the reaction velocity can be characterized by the rate constants, the
major task of enzyme kinetics is to measure the rate constants of reactions catalyzed by
enzymes [1].

Adrian Brown took the first case study of enzyme kinetics in 1902 [3]. Victor
Henri proposed two reaction mechanisms which contains only one substrate and one
product forming a substrate-enzyme complex [4,5]. One of these models became the
basic model of enzyme kinetics. It consists of two elementary steps. In the first step,
the substrate S and the enzyme E form a substrate-enzyme complex C with rate k1.
This step is reversible with the rate constant k−1. The substrate-enzyme complex C
decomposes into product P and enzyme E with rate constant k2 in the second step
which is assumed to be irreversible.

E + S
k1�

k−1
C

k2−→ P + E, (1)

Thoroughly studying this model can help us deal with more complex ones.
Since enzyme kinetics is a branch of chemical kinetics [1], law of mass action is

usually applicable for modeling the reaction process. Then, the reaction process can
be described by a system of differential equations [6]:

d S/dt (t) = −k1S(t)E(t) + k−1C(t) (2)

d E/dt (t) = −k1S(t)E(t) + (k−1 + k2)C(t) (3)

dC/dt (t) = k1S(t)E(t) − (k−1 + k2)C(t) (4)

d P/dt (t) = k2C(t) (5)

with the initial condition

(S(0), E(0), C(0), P(0)) = (S0, E0, 0, 0), (6)

where E(t), S(t), C(t) and P(t) denote the concentrations of enzymes, substrates,
enzyme-substrate complexes and products at time t during the process, respectively.

This system of equations is nonlinear, and can not be integrated explicitly. Many
enzymologists added more conditions or assumptions on these systems to simplify
this problem. In 1913, Michaelis and Menten proposed the equilibrium assumption
that under the condition k−1 � k2, the first step of this reaction reaches equilibrium
[7]. That is to say

E(t)S(t)/C(t) = k−1/k1 = K . (7)

which leads to:
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v = d P/dt = k2C(t) = k2 E0S(t)/(S(t) + K ), (8)

where v is the velocity of the production P .
However, the condition in this assumption is usually unrealistic and has little usage.

After that, Briggs and Haldane proposed the famous Quasi-Steady-State Assump-
tion(QSSA) in 1925 [8], which is proved to be always true more than 80 years later
and named as Quasi-Steady-State Law(QSSL) [9]. The assumption said [1]:

“Under the physiologically common condition that substrate is in great excess over
enzyme (S0 � E0), the enzyme-substrate complex C remains approximately constant
until the substrate is nearly exhausted with an exception of the transient initial stage
of the reaction.”

That is to say

dC(t)/dt = k1S(t)E(t) − (k−1 + k2)C(t). (9)

Hence, the velocity v of the production P is

v = d P/dt = k2C(t) = k2 E0S(t)/(S(t) + KM ), (10)

where KM = (k−1 + k2)/k1. Briggs and Haldane then got the equation:

v0 = VmaxS0/(KM + S0), (11)

where v0 is the initial velocity of the reaction and Vmax = k2 E0. S0 and E0 are the
initial concentrations of substrate and enzyme, respectively.

Note that, the forms of Eqs. (10) and (8) are similar. In order to recognize the impor-
tance of the pioneer work of Michaelis and Menten, Eq. (11) is known as Michaelis–
Menten equation. This is the basic equation in enzyme kinetics.

Using the reciprocal form of the Michaelis–Menten equation, Lineweaver and Burk
provided a method to measure KM and Vmax [10]. From then on, many biologists
discussed the validity of Michaelis–Menten equation and the exactness of the recip-
rocal form estimation [11–20]. The Michaelis–Menten equation is considered to pro-
vide a good relationship among these rate constants. At the single-molecule level,
the enzyme molecule moves according to thermal fluctuation and reacts stochasti-
cally with substrate molecules [21,22]. By the statistical analysis of the stochas-
tic behave, Michaelis–Menten equation also holds [2,23]. However, the reciprocal
form estimation provides relative poor accuracy [24]. In spite of this, many text-
books introduce it as an important method for its simplicity [1,25–27]. It provides
an acceptable estimation in the era without computers. Nowadays, kinetics data are
often treated by complicated statistical methods with computers, such as nonlinear
regression [1].

Some more effective methods are provided to measure KM and Vmax [14–16]. All
these methods do not require additional equipments beyond those required by the
method provided by Lineweaver and Burk. They just measure the concentrations of
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enzymes and substrates during the reaction process. So we confirm that KM and Vmax
can be measured exactly.

Nowadays, biologists can use temperature jump method or transient state kinetics to
measure all the rate constants k1, k2 and k−1. But these methods do require additional
complicated equipments. Recently, we provided a new approach to measure all the rate
constants without using any additional equipment other than those needed for mea-
suring KM and Vmax [28]. It only provides one more relation among these constants,
which actually is the tangent line of integral curves at the end of the reaction [28].

In this paper, we do deeper analysis of the phase plane to provide a new method
based on another relation, which is yielded by inflection points of integral curves.
Numerical experiments show that this new method is much better than the previous
one in two aspects: near the end of the reaction, the new one gives more accurate
estimation than the previous one; during the quasi-steady state of the reaction, it also
gives good estimations while the previous one can not be applied at all.

The motivation to yield this new relation comes from mathematical observation,
that is, we observe that a curve formed by inflection points of some integral curves
is more close to the real reaction process than the tangent line used in [28]. This new
relation is an absolutely new discovery which former scientists never pay any attention
to, and its value has not been recognized completely yet. It deserves more attention in
future works.

The application of differential equations and dynamical systems into biology can
be found in many fundamental text books on mathematical biology such as [29,30].

This article is organized as follows. Section 2 provides the method and Sect. 3 gives
the numerical experiments. The derivation of the key equation to our method is given
in Sect. 4, then the conclusion comes in Sect. 5.

2 Method

In the basic model, there are three rate constants k1, k2 and k−1. Knowing KM and
Vmax, we already get two relations of the rate constants, that is

Vmax = k2 E0, (12)

KM = (k−1 + k2)/k1. (13)

To get the exact values of k1, k2 and k−1, we only need one additional independent
relation. Here is the relation:

E(E0 − E)[k1SE − k−1(E0 − E)] + SE0[k1SE − (k−1 + k2)(E0 − E)] ≈ 0,

(14)

where E and S represent any pair of the concentrations after the initial transient period.
This is a linear relation of k1, k2 and k−1 and can be written as

(SE2(E0 − E) + S2 E E0)k1 − (E(E0 − E)2

+SE0(E0 − E))k−1 − SE0(E0 − E)k2 ≈ 0 (15)
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Equation (14) is the key equation to our method, so we will give detailed explana-
tions about it in Sect. 4.

By Eqs. (12–14), k1, k2 and k−1 are solved as

k1 ≈ E(E0 − E)2Vmax/B (16)

k2 = Vmax/E0 (17)

k−1 ≈ (Vmax(−SE2 E0 + SE3 − S2 E E0 + SE0 KM (E0 − E)))/B (18)

where B = E0(−SE2 E0 + SE3 − S2 E E0 + E(E0 − E)2 KM + SE0 KM (E0 − E)).
Since Vmax and KM are assumed to be known, estimates of k1, k2 and k−1 are obtained
from (16–18) if any one pair of S and E is measured at the same time. Thus, the only
thing left is to design experiments to measure one pair of S and E . Numerical results
show that the estimations are very accurate when measurements are done near the
end or during the quasi-steady state of the reaction. The detailed results are shown in
Sect. 3.

3 Numerical experiment

The whole process of the reaction (S(t), E(t)) can be drawn on the S − E plane. The
equation

E(E0 − E)
[
k1SE − k−1(E0 − E)

] + SE0
[
k1SE − (k−1 + k2)(E0 − E)

] = 0,

(19)

which relates to (14), defines a curve on the S − E plane. It is an essential point of our
new method that the curve (19) approximates the real reaction process well. In [28],
we use the tangent line to approximate the real reaction when the reaction is near its
end. Fig. 1 illustrates a case calculated by computers, which shows that the red curve,
that is the approximation curve (19) proposed in this paper, is much better than the
tangent line after the initial period. To show this more convincing, we do the same
experiment as in [28] to compare these two methods.

We simulate the reaction processes by fourth order Runge–Kutta method with step-
length 0.00002 on computers. In fact, the whole process can be described by the
following equations [16]:

d S/dt = −k1SE + k−1(E0 − E), (20)

d E/dt = −k1SE + (k−1 + k2)(E0 − E) (21)

with the initial condition (S(0), E(0)) = (S0, E0). We set k1 = 0.3, k2 = 0.2, k−1 =
0.1 and (S0, E0) = (20, 0.5), which are the same settings as in [28]. Then,
(S(t), E(t)) can be calculated for t > 0.

In this numerical experiment, we also assume that KM and Vmax have already been
measured exactly. That is to say, KM = (k−1 + k2)/k1 = 1 and Vmax = k2 E0 = 0.1.
So k2 = Vmax/E0 = 0.2.
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Fig. 1 Approximation of the real reaction process: the blue curve indicates the real reaction process. The
dash line represents the tangent line, and the red curve is the approximate curve proposed in this paper
(Color figure online)

Table 1 The first two columns of this table list the concentrations of S and E , respectively

S E k̂1 k̃1 k̂−1 k̃−1

0.0400 0.4749 0.3779 0.3060 0.1779 0.1060

0.0360 0.4772 0.3682 0.3055 0.1682 0.1055

0.0320 0.4796 0.3591 0.3050 0.1591 0.1050

0.0280 0.4820 0.3504 0.3045 0.1504 0.1045

0.0240 0.4844 0.3422 0.3039 0.1422 0.1039

0.0200 0.4869 0.3343 0.3034 0.1343 0.1034

0.0160 0.4894 0.3268 0.3028 0.1268 0.1028

0.0120 0.4920 0.3197 0.3021 0.1197 0.1021

0.0080 0.4946 0.3129 0.3015 0.1129 0.1015

0.0040 0.4973 0.3063 0.3008 0.1063 0.1008

0.0020 0.4986 0.3031 0.3004 0.1031 0.1004

0.0010 0.4993 0.3016 0.3002 0.1016 0.1002

0.0005 0.4997 0.3008 0.3001 0.1008 0.1001

0.0001 0.4999 0.3002 0.3000 0.1002 0.1000

k̂1 and k̂−1 represent the estimated value calculated by former method. k̃1 and k̃−1 represent the estimated
value calculated by the new method, i. e. the righthand side of (16) and (18), respectively

As mentioned in the above section, to get the approximate values of k1 and k−1, we
need to measure just one pair of S and E at the same time during the reaction process.
In this experiment, we choose any pair of S and E near the end of the reaction, and
substitute them in (16) and (18). Table 1 gives a few results.

In [28], the nearer the end of the reaction the measurements are done, the more
accurate the results are. However, if the measurement is done too close to the end of
the reaction, the unavoidable measurement error may lead to large errors in k1, k2 and
k−1. Near the end of the reaction, we see from Table 1 that this new method does much
better. For example, the result got by the new method for S = 0.04 is better than that
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Fig. 2 A much better estimation: the red line shows the estimation in [28] and the green one shows the
estimation in this article (Color figure online)

got by the previous one even for S = 0.004. That means, using the new method, we
need not measure concentrations of reactants so close to the end of the reaction as the
previous one.

To give a more illustrative description, we draw the results of these two methods
in Fig. 2.

In [9], we have proved two quasi-steady sate laws, which show that the reaction
would attain a quasi-steady state after the initial transient period provided S0 � E0.
This new method can also be applied during the quasi-steady state of the reaction. To
give an example, we test it on the reaction mentioned above, that is the reaction with rate
constants k1 = 0.3, k2 = 0.2, k−1 = 0.1 and initial condition (S0, E0) = (20, 0.5).
Some results are listed in Table 2, which show that when S0 � E0, during the quasi-
steady state of the reaction, the new method gives very good estimations of the rate
constants. The reason for this appearance is given in Sect. 4. Note that the first two
estimations of the left column in Table 2 are absurd. This is because the new relation
(19) differs with the real reaction largely during the initial transient period. Thus, this
method should be applied after the initial transient period.

An intuitive description of rate constants estimations is shown in Fig. 3. This fig-
ure shows again that our new method can provide a good approximation of the three
rate constants by measuring S not only near the end of the reaction but also during
the quasi-steady state. This avoids the problem, requiring measuring both enzyme
and substrate concentration accurately near the end of the reaction, which the former
method may encounter.

4 Motivation and derivation of the key equation

In this section, we will explain how we figure out this relation and why this method is
reasonable.
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Table 2 Estimated values of k1
and k−1 by our new method,
where the exact values are
k1 = 0.3 and k−1 = 0.1

S E k̃1 k̃−1

19.38 0.02453 4.4886 4.2886

19.36 0.02454 0.3881 0.1881

19.20 0.02473 0.3005 0.1005

18.20 0.02602 0.3005 0.1005

17.20 0.02748 0.3006 0.1006

16.20 0.02904 0.3006 0.1006

15.20 0.03083 0.3007 0.1007

14.20 0.03285 0.3008 0.1008

13.20 0.03516 0.3009 0.1009

12.20 0.03781 0.3010 0.1010

11.20 0.04090 0.3012 0.1012

10.70 0.04264 0.3013 0.1013

10.20 0.04454 0.3014 0.1014

9.70 0.04661 0.3016 0.1016

8.70 0.05139 0.3019 0.1019

7.70 0.05725 0.3023 0.1023

6.70 0.06462 0.3028 0.1028

5.90 0.07204 0.3034 0.1034

5.00 0.08271 0.3044 0.1044

4.00 0.09898 0.3059 0.1059

3.00 0.12317 0.3084 0.1084

2.00 0.16292 0.3126 0.1126

1.00 0.24099 0.3192 0.1192

0.50 0.31927 0.3213 0.1213

0.30 0.36927 0.3196 0.1196

0.20 0.40213 0.3169 0.1169

0.10 0.44356 0.3117 0.1117

0.04 0.47487 0.3060 0.1060

As mentioned, the whole process of the reaction (S(t), E(t)) can be drawn on the
S− E plane. Since S(t) decreases when t increases, we can consider E to be a function
of S. Then, E(S) satisfies the following equation according to Eqs. (20) and (21):

d E/d S = (−k1SE(S) + (k−1 + k2)(E0 − E(S)))/(−k1SE(S) + k−1(E0 − E(S)))

(22)

where S ∈ (0, S0]. To give a precise description of system consisting of Eqs. (20) and
(21) or Eq. (22), we should analyze the phase field of S − E plane as in [9].

Define

P(S, E) = −k1SE + k−1(E0 − E),

Q(S, E) = −k1SE + (k−1 + k2)(E0 − E).
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Fig. 3 Estimation given by the whole process: the first panel describes the whole reaction process. The
next two panels show the corresponding estimations of k1 and k−1 by the method provided in the paper.
When the reaction attains its steady state, the approximation becomes very good. As S decreases, the
approximation becomes worse. However, after the reaction leaves its steady state and approaches its end,
the approximation becomes better and better (color figure online)

Divide the first quadrant into five regions as

L1 = {(S, E) : Q(S, E) = 0, S ≥ 0},
L2 = {(S, E) : P(S, E) = 0, S ≥ 0},
R1 = {(S, E) : E > Ẽ, (S, Ẽ) ∈ L1},
R2 = {(S, E) : Ẽ > E > Ê, (S, Ẽ) ∈ L1, (S, Ê) ∈ L2},
R3 = {(S, E) : E < Ê, (S, Ê) ∈ L2}.

It can be proved that

{
d S/dt (t) = P(S(t), E(t)) < 0
d E/dt (t) = Q(S(t), E(t)) < 0

(23)

in the region R1,

{
d S/dt (t) = P(S(t), E(t)) < 0
d E/dt (t) = Q(S(t), E(t)) > 0

(24)
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in the region R2,

{
d S/dt (t) = P(S(t), E(t)) > 0
d E/dt (t) = Q(S(t), E(t)) > 0

(25)

in the region R3,

{
d S/dt (t) = P(S(t), E(t)) < 0
d E/dt (t) = Q(S(t), E(t)) = 0

(26)

on the curve L1, and

{
d S/dt (t) = P(S(t), E(t)) = 0
d E/dt (t) = Q(S(t), E(t)) > 0

(27)

on the curve L2 (cf. Fig. 4).
We denote (S∗(t), E∗(t)) as the specific solution of this system with initial con-

dition (S∗(0), E∗(0)) = (S0, E0) and denote (S∗(t), E∗(t)) as the specific solu-
tions satisfying initial condition (S∗(0), E∗(0)) ∈ L2 with sufficiently large S∗(0).
According to (27), the solution will vertically enter the region R2. Then, by (24), S∗(t)
decreases and E∗(t) increases. In fact, as the proof of Lemma 3 in [9], (S∗(t), E∗(t))
will stay in R2 forever and finally approaches (0, E0). In the region R2, the solution
will go almost horizontally to the left, but at last it will approach (0, E0) with the

slope −
(

k1 E0 − (k−1 + k2) + √
(k1 E0 + k−1 + k2)2 − 4k1k2 E0

)/
2k−1, which has

been proved in [28]. Therefore, there is an inflection point on each solution curve
(S∗(t), E∗(t)), cf. Fig. 5.

At the inflection point, (S, E(S)) satisfies that d2 E/d S2 = 0. According to (22),

d2 E/d S2 = k1k2 A(S, E)/(k1SE(S) − k−1(E0 − E(S)))3. (28)

Fig. 4 The phase plane S − E
(color figure online)
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Fig. 5 Three solutions: the
blue, the purple and the orange
curves indicate, respectively,
three solutions with the initial
condition on the curve L2. Each
of them has an inflection point
(Color figure online)

Fig. 6 Solutions with initial conditions on curve L2 goes beneath (S∗(t), E∗(t)): the blue curve is the
solution (S∗(t), E∗(t)), and the purple and red curves represent, respectively, two solutions with the initial
condition on the curve L2. They go beneath (S∗(t), E∗(t)) (Color figure online)

Fig. 7 The black curve
indicates a part of the curve
consists of inflection points,
which is under the red solution
(S∗(t), E∗(t)) (color figure
online)

where A(S, E) = E(E0 − E)[k1SE −k−1(E0 − E)]+ SE0[k1SE −(k−1 +k2)(E0 −
E)]. Therefore, the curve defined by A(S, E) = 0 must intersect with each solution
(S∗(t), E∗(t)) when S∗(0) is sufficiently large. As this system satisfies the existence
and uniqueness condition of differential systems [31], any two different solutions will
not intersect. Thus, every solution with the initial condition on the curve L2, that is
(S∗(t), E∗(t)), goes beneath the solution (S∗(t), E∗(t)), cf. Fig. 6.

Therefore, the curve defined by A(S, E) = 0 has at least one part beneath the
solution (S∗(t), E∗(t)) when S0 is sufficient large, cf. Fig. 7.

We see that this part of the curve A(S, E) = 0 almost coincides with the solution
(S∗(t), E∗(t)) after the solution passed through curve L1 in Fig. 7. This motivates us
that the part of A(S, E) = 0 in region R2 approximates the solution (S∗(t), E∗(t))
well. Thus, we could conclude that

A(S∗(t), E∗(t)) ≈ 0, (29)

after the initial transient period. That is just the additional relation (14). Moreover, it
also explains that during the quasi-steady state, the new method works as well.

5 Conclusion

This article provides a new relation among k1, k2 and k−1. With this, we propose
a new method to estimate all the three rate constants. Numerical results show that
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this method is much better than that given in [28]. That is, this gives not only more
accurate estimations than the previous one near the end of the reaction, but also very
good estimations during the quasi-steady state which is beyond the applicable scope
of the previous one. Actually, the latter situation is more convenient for measurement
than the former. In other words, this new method not only advances the estimation
accuracy, but also allows to have more choices for measurements.

The new relation A(S, E) = 0 comes from a mathematical observation that it is
an accurate approximation of the trajectory of real reaction after the initial transient
period, when S0 is sufficiently large. To give a mathematical rigorous proof is not easy
and is unnecessary in this article. We will do that in a forthcoming paper with more
comprehensive study of the relationship between the curve A(S, E) = 0 and the real
reactions.
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